413 research outputs found

    Statistical expansions and locally uniform Fréchet differentiability

    Get PDF
    Estimators which have locally uniform expansions are shown in this paper to be asymptotically equivalent to M-estimators. The M-functionals corresponding to these M-estimators are seen to be locally uniformly Fréchet differentiable. Other conditions for M-functionals to be locally uniformly Fréchet differentiable are given. An example of a commonly used estimator which is robust against outliers is given to illustrate that the locally uniform expansion need not be valid

    CubeSat Attitude Determination and Control System (ADACS) Characterization and Testing for Rendezvous and Proximity Operations (RPO)

    Get PDF
    This research endeavors to evaluate and characterize the performance of CubeSat specific commercial-off-the-shelf (COTS) Attitude Determination and Control Systems (ADACS) for Mission suitability. To ensure COTS components are capable of meeting CubeSat mission requirements, deliberate performance testing of critical CubeSat subsystems in flight-like conditions is essential. This effort focuses on testing the MAI-401 ADACS subsystem as configured to support the Grissom-1 CubeSat mission, as mounted to an air bearing, residing within a 3-axis Helmholtz Cage, and subjected to a simulated magnetic environment of various orbital parameters

    Immune reconstitution in pediatric patients following hematopoietic cell transplant for non-malignant disorders

    Get PDF
    Allogeneic hematopoietic cell transplant (HCT) is curative for pediatric patients with non-malignant hematopoietic disorders, including hemoglobinopathies, bone marrow failure syndromes, and primary immunodeficiencies. Early establishment of donor-derived innate and adaptive immunity following HCT is associated with improved overall survival, lower risk of infections and decreased incidence of graft failure. Immune reconstitution (IR) is impacted by numerous clinical variables including primary disease, donor characteristics, conditioning regimen, and graft versus host disease (GVHD). Recent advancements in HCT have been directed at reducing toxicity of conditioning therapy, expanding donor availability through use of alternative donor sources, and addressing morbidity from GVHD with novel graft manipulation. These novel transplant approaches impact the kinetics of immune recovery, which influence post-transplant outcomes. Here we review immune reconstitution in pediatric patients undergoing HCT for non-malignant disorders. We explore the transplant-associated factors that influence immunologic recovery and the disease-specific associations between IR and transplant outcomes

    Adaptive trimmed likelihood estimation in regression

    Get PDF
    In this paper we derive an asymptotic normality result for an adaptive trimmed likelihood estimator of regression starting from initial high breakdownpoint robust regression estimates. The approach leads to quickly and easily computed robust and efficient estimates for regression. A highlight of the method is that it tends automatically in one algorithm to expose the outliers and give least squares estimates with the outliers removed. The idea is to begin with a rapidly computed consistent robust estimator such as the least median of squares (LMS) or least trimmed squares (LTS) or for example the more recent MM estimators of Yohai. Such estimators are now standard in statistics computing packages, for example as in SPLUS or R. In addition to the asymptotics we provide data analyses supporting the new adaptive approach. This approach appears to work well on a number of data sets and is quicker than the related brute force adaptive regression approach described in Clarke (2000). This current approach builds on the work of Bednarski and Clarke (2002) which considered the asymptotics for the location estimator only

    System Response Kernel Calculation for List-mode Reconstruction in Strip PET Detector

    Get PDF
    Reconstruction of the image in Positron Emission Tomographs (PET) requires the knowledge of the system response kernel which describes the contribution of each pixel (voxel) to each tube of response (TOR). This is especially important in list-mode reconstruction systems, where an efficient analytical approximation of such function is required. In this contribution, we present a derivation of the system response kernel for a novel 2D strip PET.Comment: 10 pages, 2 figures; Presented at Symposium on applied nuclear physics and innovative technologies, Cracow, 03-06 June 201

    Beam profile investigation of the new collimator system for the J-PET detector

    Get PDF
    Jagiellonian Positron Emission Tomograph (J-PET) is a multi-purpose detector which will be used for search for discrete symmetries violations in the decays of positronium atoms and for investigations with positronium atoms in life-sciences and medical diagnostics. In this article we present three methods for determination of the beam profile of collimated annihilation gamma quanta. Precise monitoring of this profile is essential for time and energy calibration of the J-PET detector and for the determination of the library of model signals used in the hit-time and hit-position reconstruction. We have we have shown that usage of two lead bricks with dimensions of 5x10x20 cm^3 enables to form a beam of annihilation quanta with Gaussian profile characterized by 1 mm FWHM. Determination of this characteristic is essential for designing and construction the collimator system for the 24-module J-PET prototype. Simulations of the beam profile for different collimator dimensions were performed. This allowed us to choose optimal collimation system in terms of the beam profile parameters, dimensions and weight of the collimator taking into account the design of the 24 module J-PET detector.Comment: 14 pages, 9 figure

    Application of Compressive Sensing Theory for the Reconstruction of Signals in Plastic Scintillators

    Get PDF
    Compressive Sensing theory says that it is possible to reconstruct a measured signal if an enough sparse representation of this signal exists in comparison to the number of random measurements. This theory was applied to reconstruct signals from measurements of plastic scintillators. Sparse representation of obtained signals was found using SVD transform.Comment: 7 pages, 3 figures; Presented at Symposium on applied nuclear physics and innovative technologies, Cracow, 03-06 June 201

    A novel method for calibration and monitoring of time synchronization of TOF-PET scanners by means of cosmic rays

    Full text link
    All of the present methods for calibration and monitoring of TOF-PET scanner detectors utilize radioactive isotopes such as e.g. 22^{22}Na or 68^{68}Ge, which are placed or rotate inside the scanner. In this article we describe a novel method based on the cosmic rays application to the PET calibration and monitoring methods. The concept allows to overcome many of the drawbacks of the present methods and it is well suited for newly developed TOF-PET scanners with a large longitudinal field of view. The method enables also monitoring of the quality of the scintillator materials and in general allows for the continuous quality assurance of the PET detector performance.Comment: 10 pages, 7 figure
    corecore